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Abstract
In the present paper, we concentrate on the influence of local defects on scattering properties of
elastic waves in perturbed crystalline quasi-three-dimensional nanostructures in the harmonic
approximation. Our model consists of three infinite atomic planes, assimilated into a perfect
waveguide in which different distributions of scatterers (or defects) are inserted in the bulk. We
have investigated phonon transmission and conductance for three bulk defect configurations.
The numerical treatment of the problem, based on the Landauer approach, resorts to the
matching method initially employed for the study of surface localized phonons and resonances.
We present a detailed study of the defect-induced fluctuations in the transmission spectra. These
fluctuations can be related to Fano resonances and Fabry–Pérot oscillations. The first is due to
the coupling between localized defect states and the perfect waveguide propagating modes
whereas the latter results from the interference between incidental and reflected waves.
Numerical results reveal the intimate relation between transmission spectra and localized
impurity states and provide a basis for the understanding of conductance spectroscopy
experiments in disordered mesoscopic systems.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Scattering and localization phenomena in disordered meso-
scopic systems have been well established both experimen-
tally [1] and theoretically [2]. They are actually of renewed
interest owing to advances in nanotechnologies, the basic
motivation being to understand the limitations that structural
disorder may have on physical and mechanical properties of
crystalline materials. Our present knowledge of the related
phenomena has been given by the work of Landauer [3],
in which the sample studied is represented by a series of
scatterers (or defects) inserted in the bulk or on the surface
of a perfect waveguide, made it possible to connect the
conductance of the sample to its scattering matrix. His
interpretation has stimulated many researchers [4–8] to look
for the effects of quantum coherence in dc transport in
particular. Recently, several authors [9–14] have shown that
multiple scattering and quantum interference become very

important in describing transport phenomena, localization
of electron states in disordered media [1, 3, 6], coherent
magnetotransport [1, 7] and to investigate structural properties
of low-dimensional samples [6, 9, 10].

In the present work, we concentrate on the influence
of localized impurities on scattering properties of vibrational
waves in perturbed quasi-three-dimensional crystalline struc-
tures in the harmonic approximation [12]. While there has
been interest in electronic phenomena for many years, the
study of vibrational waves by completely ab initio techniques
is still a difficult task. The numerical treatment of the problem,
based on the Landauer principle, resorts to the matching
method [15, 16] initially employed for the study of surface
localized phonons and resonances. This method already gave
satisfactory results for electronic phenomena [4, 5] and wave
scattering [8–12].

In the following, we shall show that the different nature
of vibrational waves gives rise to some interesting properties.
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Figure 1. Two-dimensional cross section of perturbed crystallographic waveguide modelled by a triple infinite atomic plane. The shaded area
II indicates the defect region, while areas I and III are two semi-infinite perfect waveguides. The perturbed region contains defect masses and
defect springs.

As in the electron case, we find that the conductance spectra of
vibrational waves can be regarded as identifying characteristics
of the structural properties of the considered system. Multiple
scattering causes a large variety of resonance features identified
as Fano resonances, due to a coupling between continuum
propagating modes and defect-induced states and Fabry–Pérot
oscillations resulting from the interferences between incidental
and reflected waves in the perturbed area.

The complexity in the present vibrational study is
enhanced, as compared to previous work concerning quasi-
one-dimensional waveguides, by the need to treat the increased
dimensionality of the considered system.

The organization of this paper is as follows. After a brief
summary description of the method employed, section 2 is
interested in the dynamical properties of the perfect waveguide
and the presentation of the algebraic formalism for scattering
in the presence of defects. Section 3 will be devoted to the
calculation of the transmission coefficient and its evolution in
terms of the defect mass and of the bonding constants in the
perturbed region.

2. Principle of the method

The matching method, initiated by Feuchtwang in 1967 and
developed by Szeftel et al in 1987 [16], accounts in a
satisfactory way for the phonon dispersion curves [6] and
surface resonances. It also gives a more general definition
of the concept of resonance and allows a more transparent
analysis of the displacement behaviour in the vicinity of
Van Hove singularities [17]. Its implementation requires the
crystal’s subdivision into three distinct regions, all having the
same two-dimensional periodicity along the surface (figure 1):

(i) A bulk region having three-dimensional (3D) periodicity
representing the crystal without defect (perfect waveg-
uide) where the dispersion curve is first worked out. It
is assimilated into regions I and III of figure 1.

(ii) A perturbed region consisting of an arbitrary number of
adsorbate, reconstructed or relaxed layers, inside which

the translational symmetry is lost along that direction not
contained in the surface plane. It is represented by region
II of figure 1.

(iii) An intermediate region of bulk matter, the thickness
of which increases with increasing range of inter-layer
interactions, used to match bulk phonons with the
boundary conditions imposed by the surface, from which
the technique was given the name ‘matching method’. In
our case, this area is represented on both sides of region
II by the matching areas which make it possible to relate
the defect atomic displacements to those of the two semi-
infinite waveguides I and III (figure 1).

2.1. Dynamics of the perfect lattice

The geometry of the structure studied sketched in figure 1 is
modelled by three lattice planes always parallel to the x–y
plane. It consists in a 3D simple cubic lattice with nearest-
and next-nearest-neighbour interactions. This approximation
seems reasonable in the condensed matter context [8]. In the
I and III unperturbed regions, elastic constants between first
neighbours are indicated by k1 and those between second ones
by k3. The other force constants are indicated by different
features on the diagram from figure 1. The perturbed region II
itself (grey area in the figure), composed of isolated scatterers
or interstitial defects positioned in the centre of the xz face of
the cubic crystal, extends over columns 0 to n. Defect planes
are separated by a distance δ. For simplification reasons, the
edge length a of the cube is taken equal to unity.

The matching method that we employ has previously
been extended to study wave scattering in quasi-1D disordered
mesoscopic systems [8, 9, 11]. The equation of motion of an
atom (l) at the frequency ω is given as usual in the harmonic
approximation [12] by

ω2m(l)uα(l, ω
2) = −

∑

l′ �=l

∑

β

K (l, l ′)
rαrβ

d2

× [uβ(l, ω2) − uβ(l ′, ω2)], (1)

2



J. Phys.: Condens. Matter 20 (2008) 465218 M S Rabia

Figure 2. Dispersion branches for the bulk phonon propagating modes of the triple plane with φx running over the first Brillouin zone
[−π/a π/a ], for the case of a null incidence angle.

where α, β ∈ {x, y, z} indicate the different Cartesian
directions of space. m = m(l) is the atomic mass located
at the site (l), uα(l, ω2) is the displacement field along the
α direction; rα is the corresponding Cartesian component of
the relative radius vector between sites (l) and (l ′), and d
represents the distance ll ′, whereas K (l, l ′) is the bonding
strength constant between the atoms occupying these sites. Let
us recall that the summation concerns all the first and second
neighbours of the site (l). Moreover, to take account of the
modification of the strain field in the perturbed region, we will
define a parameter λ indicating the relationship between the
modified force constants (region II) and those of the perfect
areas I (left) and III (right-hand side), see figure 1.

In the Ox propagating direction, the elastic wave can be
attenuated when meeting the defect. It would be convenient, in
this case, to introduce a phase factor Z (not to be confused with
the z direction) relating displacements of two adjacent atomic
sites:

ux(n ± 1, p) = Z±1ux(n, p). (2)

The attenuated wave is described by a value of Z whose
modulus is lower than unity, whereas the propagating wave is
given by z = eiqx a = eiφx , where qx is the component along
the Ox axis of the reciprocal lattice wavevector �q. This phase
relation is an essential feature of the matching method [15, 16],
initially employed for the calculation of surface phonons and
resonances. Note that in the Oy direction, parallel to the
perturbating atomic chain, Z is defined by eiqy ay = eiφy in
accordance with the Bloch function. Vibrational displacements
along the Oy axis are bound by the equality

uy(n, p ± 1) = e±iφy u y(n, p). (3)

Taking into account the relations (2) and (3), the perfect lattice
atom equation of motion (1) rewrites itself in the following
matrix system:

[	2 I − D(φy, r3, Z)]|u〉 = |0〉, (4)

where 	2 = mω2/K (l, l ′) is the dimensionless frequency,
I is the identity matrix, D(φy, r3, Z) is the perfect lattice
dynamical matrix (regions I and III) and |u〉 is the vector
displacement. r3 denotes the force constant ratio between
nearest and next-nearest neighbours.

For fixed r3 = k3/k1 = 0.5 and Z = eiϕx , the
resolution of equation (4) determines the eigenfrequencies of
vibration 	ν as well as the corresponding eigenvectors �uν . The
nine propagating modes of the triple plane correspond to the
solution Z = 1. When φx is running over the first Brillouin
zone [−π/a π/a], one obtains the dispersion curves 	(φx).
Figure 2 shows the shape of these curves, symmetrical relative
to the frequency axis, for a null incidence angle. Contrary
to the electronic case where the curves are parallel sinusoids,
we do not have here any hope of finding a usable analytical
expression. It will thus be necessary to resort to purely
numerical methods to integrate these dispersion relations in the
general problem in the presence of a defect.

For a null incidence angle, the three first modes are
acoustic and the six others are optical. All modes become
optical for any other value of φy . Moreover, the dispersion
branches overlap at a certain frequency interval which
decreases when φy increases. So we must expect that
the modes will be simultaneously excited in these regions.
The examination of eigenvectors shows that modes 3, 5
and 8 (classification being done upwards) are polarized
longitudinally whereas the rest of the modes are polarized

3
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Figure 3. Functional behaviours 	(Z) of the vibrational modes characterizing the triple atomic plane. Unit circles correspond to propagating
modes (dispersion curves 	(φx ) of figure 2) whereas the evanescent modes are represented by the parts inside the unit circles.

transversely. These polarizations are typical for other values
of φy . Note that the lowest acoustic branch appears to exhibit
a nonlinear variation in the long-wavelength limit [18]. This
behaviour is a consequence of the finite extension of the
waveguide in the z direction.

In addition to the propagating modes described previously,
the scattering in the presence of a defect also requires the
determination of the evanescent modes (|Z | < 1) of the
system. Although the evanescent modes do not contribute to
energy transport they are necessary for a full description of
the scattering problem. These solutions can be obtained by
different procedures [10]. An elegant and well-suited way used
in similar electronic problems [7, 19] consists of increasing the
space eigenvectors basis by introducing new unknowns defined
by

�vβ(l) = − 1

Z
�uα(l). (5)

We then rewrite equation (2) in the form of an eigenvalue
problem for Z :

A(ω, r3, φy) �W = Z B(r3, φy) �W with �W =
(

uα(l)
vβ(l)

)
,

(6)
where the A and B matrices, of dimension (18 × 18), come
from the basis change. Note that the dimension of this
generalized eigenvalue problem is twice as large as the original
problem.

The solution of equation (6) yields nine pairs of
eigenvalues Z and Z−1, which must be sorted. As discussed
above, eigenvalues with |Z | = 1 correspond to propagating
waves, which are described by real wave vectors. These
solutions can be grouped in pairs corresponding to the two
directions of propagation. Both solutions are linked by time-
reversal symmetry. Owing to the fact that they contain the same

information, we arbitrarily choose those which are propagated
from the left to the right. Solutions with |Z | �= 1 correspond
to evanescent or divergent waves. Only the physically
relevant evanescent modes are retained. Both propagating
and evanescent solutions are needed for the description of the
scattering in the presence of defects.

The functional behaviours 	(Z) of the nine vibratory
eigenmodes characterizing the triple plane are given in figure 3
for the case of an incidence angle φy = 0. The projection
of modes on the Z complex plane shows that the propagating
solutions 	(φx) of figure 2 are represented by the curves
following the unit circles of radii equal to the phase factor
modulus, whereas the evanescent solutions correspond to the
curves contained inside the unit circles. In addition, the
anticrossing phenomenon of the 5 and 9 optical modes, of
the same symmetry, constrained phonons to take evanescent
paths to jump from one propagating branch to the other in the
interacting zone [10] (surrounded by a dotted circle in figure 2).

This spatial representation of the dispersion relations
corresponds to the complex phononic band structure, real
frequency versus complex phase factor Z , which presents
a great similarity to the results obtained by Sainidou et al
[20] using the layer-multiple-scattering method in the study of
phononic crystals.

In order to show the correspondence between figures 2
and 3, we have marked common special points in both the
	(Z) and 	(φx) representations. The paths followed by the
phonons are also shown by arrows on the dispersion curves. It
is then clear that the frequency ranges of propagating modes
3–9 will be slightly different, obviously, from that given
by the dispersion curves of figure 2. Figure 4 shows the
evolution of the attenuation factor as a function of the incident
phonon frequency for each vibrating mode characterizing the
waveguide. One can find that the plateau’s length indicates

4
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Figure 4. Attenuation factor evolution as a function of the dimensionless frequency for the waveguide eigenmodes. The extent of the plateau
indicates the specific propagating frequencies range of each mode.

the new propagating frequency ranges of all nine waveguide
modes.

2.2. Elastic scattering at defects

The presence of defects in a waveguide modifies considerably
the mechanical properties of the structure by creating new
localized states and by diffusing phonons in the volume and
on the surface. Since the perfect waveguides do not couple
between different eigenmodes, we can treat the scattering
problem for each eigenmode separately. For an incidental wave
coming from the left to right (figure 1) in the eigenmode ν̄

�V i
in = (Z ν̄)

i �u ν̄ , (7)

where Z ν̄ is the phase factor of the incoming wave, �u ν̄ is its
eigenvector; the exponent i indicates the site occupied by the
atom along the direction of propagation.

The resulting scattered waves, composed of a reflected
and transmitted part, give rise to vibratory displacements �ur

and �ut in the two half spaces L and R, respectively. They
can be expressed as a superposition of the perfect waveguide
eigenmodes at the same frequency:

�ui
r =

∑

ν

rνν̄ ·
[

1

Zν

]i

· �uν

(
1

Zν

)
, (8)

�ui
t =

∑

ν

tνν̄ · [Zν]i · �uν(Zν), (9)

where rνν̄ and tνν̄ determine the reflection and transmission
coefficients normalized beforehand by group velocities (slopes
of the dispersion curves) of the plane wave. Explicitly, for

waves incoming in mode ν̄, the reflection coefficient is

rνν̄ = V gν

V gν̄

|ξνν̄ |2, (10)

and the transmission coefficient is

tνν̄ = V gν

V gν̄

|ηνν̄ |2. (11)

Here, ξ
νν̄

and η
νν̄

are the reflection and transmission
probabilities. V gν̄ is the group velocity of the incidental mode
ν̄ and V gν is that of the output channel ν. As long as only
one mode is excited, the problem of normalization of these
coefficients by group velocities does not arise. Indeed, the
sum of the reflection and transmission coefficients gives unity
directly, because the momentum of the incidental mode is
entirely transferred to the single outgoing mode, from where
V gν = V gν̄ . Let us note that the velocity is set equal to zero for
the evanescent modes. From their nature, these modes cannot
transport energy.

With the above definitions, we only need to solve
equation (1) for the masses inside the perturbed region M
(irreducible set of atoms) and in the boundary columns
(−1) and (n + 1), which are matched to the rest of the
perfect waveguide by equations (8) and (9). By isolating
the inhomogeneous terms describing the incidental wave, we
obtain an inhomogeneous system of linear equations:

[D f (	, φy, r3, λ, Z)][R] �X = −[D f (	, φy, r3, Z)] �Vin.

(12)
where D f (	, φy, r3, λ, Z) indicates the defect dynamical
matrix, �Vin the incidental vector, R the matching matrix and
�X the vector gathering all the unknown components of the

5
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Figure 5. Transmission probabilities in terms of the incident phonon frequency for an isolated defect. The broken line indicates a light defect
(m ′ = 0.5m) whereas the continuous line refers to the heavy defect (m ′ = 2m).

problem. For three degrees of freedom per atomic site, in the
case of two defects separated by a distance δ = a, the system
yields 57 unknowns, namely the 39 displacement amplitudes
of the perturbed region M and the nine transmission and nine
reflection coefficients.

The overall transmission (or conductance) of mesoscopic
disordered multichannel systems at a given frequency 	 is
significant for calculating experimentally measurable physical
quantities. It is then useful to define the total transmission �

by summing over all input and output channels:

�(	) =
∑

ν

∑

ν̄

tνν̄ , (13)

where the sum is carried out over all propagating modes at the
same frequency 	.

3. Results and discussions

The phonon scattered by a defect is analysed relative to an
incidental wave coming from the left to the right (figure 1),
with unit amplitude and a null dephasing on the boundary
column (−1) of the atoms. We present the case where the
elastic wave propagates parallel to the x axis in the positive
direction, i.e. under a null incidence angle. Calculation is
carried out for lattice parameters r3 = 0.5 and λ = 1.2.

3.1. Isolated defects

The simplest configuration of defects to study corresponds to
a linear chain of masses m ′ �= m arranged perpendicularly
to the direction of propagation. The numerical results
for the transmission probabilities in terms of the incident
phonon frequency 	 are assigned in figure 5, in each mode

characterizing the triple plane for two masses of defect m ′ =
0.5m (light) and m ′ = 2m (heavy). Conservation of energy can
be used to show that |tν|+ |rν | = 1, so rν follows immediately.
This well-known theoretical relation is fortunately satisfied and
always checked for each frequency. Besides, this condition
constitutes an effective control method of the results.

The presence of the defect leads to a general decrease of
the transmission probability. The wave is quasi-completely
transmitted at low frequencies and the reflection probability
then increases gradually. As expected, the influence of the
defect is relatively small in the acoustic regime (modes 1, 2
and 3). However, for the heavy defect, the amplitude of the
transmission spectrum decreases considerably with the mass
m ′. For 	 → 0 (centre of the Brillouin zone) we get tν → 1
independently of the perturbation. This generalized behaviour
is also observed when backscattering becomes more significant
for wavevectors near the ending zone boundary where the
transmission probabilities tν tend towards zero, independently
of the defect mass. In contrast, for optical modes 4–9, the
studied transmission coefficients tν are null even at the first
zone boundaries (points a, b, f and g in figure 3) because the
attenuation factor modulus, at these frequencies, is less than
unity (see figure 4); the corresponding modes are evanescent
and the phonons located at these points do not have enough
energy to follow the propagating optical branches.

As in the electronic case, strong resonance features
are superposed on the monotonic transmission coefficients
(figure 5). These asymmetric resonances, identified as typical
Fano-like resonances, can be attributed to the presence of
defect-induced resonant states, whose frequency depends on
the value of the defect mass or on the relative hardening
of the bonding force constant λ in the perturbed region II.
This asymmetric behaviour in the transmission spectra of

6
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Figure 6. Total transmission probability for the isolated defect in the case of a null incidence. The indent-point histograms represent the total
hypothetical phonon transmission capacity of the perfect waveguide consisting of three atomic infinite planes. The broken and full lines refer,
respectively, to a light (m ′ = 0.5m) and a heavy defect (m ′ = 2m).

elastic waves has also been analysed in relation to phononic
crystals [13].

It should be noted that the light defect also generates
Anderson localized states already investigated in random
layered phononic structures by Sainidou et al [14]. But these
would be positioned at higher frequencies than those of the
respective propagating modes of the local defect. Thus they
cannot cause resonances in the frequency range represented
in the t2 spectrum, for example. A simple argument in
favour of this explanation can be recalled concerning the
insulated harmonic oscillator; its oscillatory frequency given
by ω = k/m stipulates that a weak mass corresponds to a high
vibration frequency. From the above arguments, we conclude
that the resonances shift to higher (lower) frequencies for
smaller (larger) defect masses. These findings are in agreement
with those of Tekman and Bagwell [5], who used a two-mode
approximation.

The results referring to the overall transmission � of the
system as a function of the dimensionless frequency 	 are
shown in figure 6. In addition to the conductance spectra
related to light and heavy defect masses, we also represented
the ideal conductance of the perfect network (histogram in
indent-point lines). In the case of the perfect network,
i.e. without mass defect or force constants, we further note
that the transmission probability is total in each mode. The
conductance of the system then becomes significant in the
frequency range where the modes overlap. For this reason it
reaches a value of 6 units in the interval of propagation ranging
between 	 ∼= 1.23 and 	 ∼= 1.41 (see also figure 2). The
conductance spectrum is much more affected in the case of a
heavy defect (full line). This influence is translated, in addition

to resonance number, by a smaller amplitude compared to the
light mass defect (dotted line).

In figures 7(a) and (b), we present the total transmission
probabilities �(	) for incoming waves with oblique incidence,
namely φy = π/4, π/3. The indent-point histograms represent
the total hypothetical phonon transmission capacity, with the
dotted and continuous curves showing the conductance for
light and heavy defects. As specified above, the frequency
range of the propagating mode decreases with increasing
incidence angle. The resonances due to interference between
a propagating transmitted mode and a local defect mode in the
perturbed region may be observed as illustrated in the previous
figures. Note that these resonances shift to higher frequencies
with increasing incident angle and are pronounced for oblique
incidence.

3.2. Defect pairs

We consider now the case of two isolated defects separated
by a portion of a perfect waveguide and located at positions
l and r . The distance between the defects δ = (l − r)a is
always a multiple of the network parameter. For simplicity,
numerical calculations present the results for two identical
defects of light mass (m ′ = 0.5m) and heavy ones (m ′ = 2m)

when r3 = 0.5 and λ = 1.1. The curves in figure 8 show
the magnitude of the transmission coefficients for different
distances in acoustic mode 2. At low frequencies, one can find
that |tν | approaches unity as 	 → 0 and is independent of the
lateral length δ of region II. This is because, at 	 → 0, the
wavelength of the phonon is much larger than the dimension
of the lateral length of the defect region and the displacement
field then becomes essentially the same throughout. In this

7
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(a)

(b)

Figure 7. (a) The same as in figure 6 for the case of an incidence angle φy = π/4. (b) The same as in figure 6 for the case of an incidence
angle φy = π/3.

case, the perturbed waveguide reverts to being a uniform
waveguide and the phonon transmission coefficient is unity.
This phenomenon, which is typical of problems in which a
wave propagates through a homogeneous medium containing a
finite section of a different homogeneous material, is discussed
in [21] for a related problem.

It can be seen that the number of Fabry–Pérot oscillations
in a given frequency interval increases as the gap widens [13].
This number depends closely on the full width δ of the defect
region, which is always a multiple of the network parameter
a. Pouthier et al [10] have noticed the same observations on
the transmittance spectrum of a nanowire containing a set of
linear clusters separated by different spacings. Our results
show clearly that the two separated scatterers have all the
characteristics of a Fabry–Pérot resonator. The amplitude

of the oscillations is, in addition, more significant in the
case of the heavy defect. Furthermore, one can find more
resonance-like features occurring in the transmission spectrum
with increasing incident frequency or the lateral length δ and
naturally the influence of defect mass and bonding constants.
Consequently, the rapid oscillations observed in the frequency
range 1.2 < 	 < 1.6 are due to the resonances caused by the
defect-induced resonant states in this region.

3.3. Defect distributions

The increase in the number of defect columns N results in a
more important size of the linear system (10), but the matrix
D f keeps its structure. The analysis becomes more and more
complex. Thus we have limited our calculations to N = 6

8
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Figure 8. Magnitude of transmission probability in acoustic channel versus scattering frequency for two identical defects separated by a
distance δ. The results are given for a light defect mass (m ′ = 0.5m) by an indent-point line and for a heavy one (m ′ = 2m) by a continuous
line.

Figure 9. Magnitude of transmission probability in the first acoustic channel versus scattering frequency for an extended defect containing N
scatterers of mass m ′ = 5m. The dotted line refers to a single scatterer having the same mass. The arrows indicate the Fano-like resonance
peaks.

which generates already a (117 × 135) matrix dimension.
Figure 9 show the transmission coefficient in the first acoustic
mode for different values of the sample thickness N in the case
of heavy defect m ′ = 5m. For the same reasons as those

mentioned for the two preceding distributions of defects, the
transmission coefficient approaches unity as 	 → 0 and is
independent of the number N of scatterers contained in region
II. The transmission probability |t1| then decreases gradually to

9
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the detriment of the reflection coefficient by always respecting
the complementarity between the two curves as is required
from the unitarity condition. Moreover, the number of Fabry–
Pérot oscillations due to the interference between multiply
scattered waves merges exactly with the number N of defects
independent of their spatial distributions. Similar results were
obtained in the study of the adatomic sequences of defects
separated by different spacings in a double quantum chain
(quasi-1D waveguide) [22]. Also, these observations indicate
that this defect provision behaves like a Fabry–Pérot resonator.
As in the case of a single defect (dotted curve in figure 9), the
transmission spectrum for N � 3 presents only one Fano-like
resonance. The resonance frequency decreases slightly with N .
Quite surprisingly, from N � 4, we obtain a second resonance
structure in the upper frequency range which is apparently due
to a second resonant state in this region. For large N , the
separation between the localized states becomes very small.
Moreover, the resonance minima do not necessarily reach zero
value, as is usually the case for defects which are extended in
the direction of propagation.

Owing to the fact that the resistance opposed to the
passage of the wave in the perturbed area becomes more
significant for the heavy mass defect, the amplitude in
transmission spectra is more affected than that referring to the
light mass. This influence also results in a higher resonance
number because of certain localized states, suitable for the
light defect, are localized at frequencies higher than those
of the implied propagating mode frequencies, as underlined
previously in the case of an isolated defect. This phenomenon
was also observed in [16] while varying λ. Thus, the variation
of the mass plays the same role as that of the λ parameter.
As may be expected, we find that defects lead always to an
increase of resistance, irrespective of their local distribution.

4. Conclusion

In this work, we have recourse to the matching method
to treat the scattering of vibrational waves by multichannel
quasi-three-dimensional disordered mesoscopic systems while
solving the Newton dynamical equation within the harmonic
approximation framework. The undulatory behaviour of
the wave through a defect was analysed by taking account
of defect mass variation and the bonding strengths in the
perturbed region. We have investigated phonon transmission
and conductance for three bulk defect configurations (isolated,
separated and extended defects) considering different inci-
dences. The presence of a defect in a crystalline nanostructure
modifies particularly its mechanical properties by the creation
of new localized states and by bulk phonon scattering [9]
and also surface phonon scattering [11, 22]. Its influence
results in a generalized decrease of the transmission spectrum
amplitude accentuated by Fabry–Pérot oscillations (due to
the interference between multiply reflected waves in region
II) and Fano-like resonances (coupling between propagating
transmitted modes and local defect-induced modes that are
embedded in the continuum). It is observed that this type
of resonance shifts to higher (lower) frequencies for smaller
(larger) defect masses following the well-known relation ω =

√
k/m. In contrast, the number of Fabry–Pérot oscillations in a

given frequency depends closely on the full width of the defect
region. The amplitude of the oscillations is, in addition, more
pronounced in the case of the heavy defect. As expected, the
influence of the light defect is smaller than the heavy defect.
The transmission or conductance spectra can thus be regarded
as fingerprints of the specific defect structure and therefore be
used for the characterization.

The interaction between defect-induced states and prop-
agating waveguide eigenmodes could provide an interesting
alternative to investigate structural properties. Although
measurements of transmission probabilities are rather difficult,
direct measurements of total transmission �(	) should be
feasible. The experimental challenge would consist in
coupling a receiver and a transmitter with known frequency
characteristics at the ends of the waveguide by avoiding the
possible back reflections at the junctions. The interference
effects are of interest for improvements in the design of
transducers and noise control [23, 24] whereas Fano-type
resonances are commonly used to build filters [25].

It should be noted that the interference phenomena
discussed in this paper are derived from the dynamical
equations in the harmonic approximation which can be applied
to any length scale, provided that the phase coherence is not
destroyed by dissipative effects. In other words, the model
can equally influence the interference effects induced in the
macroscopic systems, and it is hence possible to test the
theoretical results via an experiment using laboratory scale
masses (balls), binding springs and wave generators, as in
acoustic studies.
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